Strong convergence theorems with a Noor-type iterative scheme in convex metric spaces
نویسندگان
چکیده
منابع مشابه
Convergence Theorems of the Iterative Schemes in Convex Metric Spaces
The purpose of this paper is to study the convergence problem of Mann and Ishikawa type iterative schemes of weakly contractive mapping in a complete convex metric space. We establish the results on invariant approximation for the mapping defined on a class of nonconvex sets in a convex metric space. Finally, we obtain the existence of common fixed points of two asymptotically nonexpansive mapp...
متن کاملCONVERGENCE THEOREMS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE FOR THE MODIFIED NOOR ITERATIVE SCHEME
We study the convergence of the modified Noor iterative scheme for the class of asymptotically pseudocontractive mappings in the intermediate sense which is not necessarily Lipschitzian. Our results improves, extends and unifies the results of Schu [23] and Qin {it et al.} [25].
متن کاملStrong convergence of modified noor iteration in CAT(0) spaces
We prove a strong convergence theorem for the modified Noor iterations in the framework of CAT(0) spaces. Our results extend and improve the corresponding results of X. Qin, Y. Su and M. Shang, T. H. Kim and H. K. Xu and S. Saejung and some others.
متن کاملStrong Convergence Theorems for a Countable Family of Nonexpansive Mappings in Convex Metric Spaces
and Applied Analysis 3 by 1.5 to a common fixed point of a countable infinite family of nonexpansive mappings in convex metric spaces and CAT 0 spaces under certain suitable conditions. 2. Preliminaries We recall some definitions and useful lemmas used in the main results. Lemma 2.1 see 9, 10 . Let X, d,W be a convex metric space. For each x, y ∈ X and λ, λ1, λ2 ∈ 0, 1 , we have the following. ...
متن کاملStrong and ∆− Convergence Theorems under a Recent Iterative Scheme in CAT(0) Spaces
In this paper, we prove strong as well as ∆− convergence theorems in CAT(0) spaces for totally asymptotically nonexpansive nonself mappings under a recent iterative scheme essentially due to Agarwal et al. [3] which is relatively faster as well as independent to Ishikawa iterative scheme. Our results are improvements over several corresponding results contained in [1, 2, 14, 22, 30, 31, 33] and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2011.04.017